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A New Temporal Basis Function for the Time-Domain
Integral Equation Method

Jin-Lin Hu, Chi H. ChanSenior Member, IEEEand Yuan Xu

Abstract—A new temporal basis function that has all-order Amplitude
continuous derivative has been constructed using a nonlinear 0" B\
optimization scheme. This new basis function provides a much
more stable explicit marching-on-in-time (MOT) solution, based
on the time-domain integral equation (TDIE) method, than what
is presently available. Two examples are presented to illustrate the
superior stability of the proposed temporal basis function.

10?
Index Terms—Nonlinear optimization, temporal basis function,

time-domain integral equation method. s
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|. INTRODUCTION
10*

UMERICALLY rigorous transient analyses are based

either on the differential or integral equation approach.
A time-domain integral equation (TDIE) method that requires10 0 10 20 30 40 50 60 70 8 90 100
only a surface discretization is sometimes preferred over th_ Frequency
differential one using a volumetric discretization. Furthermorg, . . )

. .. . L . ig. 1. Comparison of the spectral content of the triangular temporal basis

TDIE implicitly imposes the radiation condition and therQUnction and our new basis function (real line: spectral content of our new basis
exists no grid dispersion. While TDIE has been around for ovinction; dotted line: spectral content of triangular basis function).
30 years [1], its widespread use as an engineering tool has been
deterred by three factors, namely, i) computational complexity II. NEW TEMPORAL BASIS FUNCTION
of the algorithm, ii) availability of the required spatial-time . . .
domain Green'’s functions of inhomogeneous medium such asTO haye a_temporal basis function 'that has all-order contin-
the layered media, and iii) stability of the marching-on-in—tim@OUS derivative, we choose the following form
(MQOT) process. The first two factors have been address ) =
recently in [2]-[4], and further improvements are likely to be

2
developed. In contrast, there is a continuous effort in searching ) €xp (— (1_t2)(1+a1t21052t4+...+awt2N)) st <1
for stable MOT schemes [5]-[8]. Each of these schemes in 0, otherwise
[5]-[8] pushes the late-time instability further down in time but 1)

could not eliminate it completely unless an implicit scheme,
such as the one proposed in [9], which requires solving a lariaown in (1) at the top of the next page]. For simplicity, we
matrix equation, is employed. In [8], there is evidence thahooseN = 1 and the function spans from1 to 1. The un-
TDIE that employs a temporal basis function with a continuodsown coefficients:, anda; are determined using the optimal
derivative would provide a more stable MOT scheme. In thionstruction scheme proposed in [10]. In [10], a nonlinear op-
paper, we introduce a new temporal basis function that h@mization scheme is adopted to minimize an objective function
continuous all-order derivative which leads to a much mowehich requires tha’(¢t — 1) + T'(¢) + T'(¢t — 1) = 1. Through
stable explicit MOT solution than what are presently availabléhis construction process, we obtain, from (1), the new temporal
basis function as
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Fig. 2. Comparison of the current densities measured at the face center of the

PEC cube using various temporal basis functions.

1Current (mA/m) .
cosine square
/ present method
o A
AR\
JSemi
] =B
-1 triangular: ? s
asis / §
' N Sz~
top view side view
2o s TR 25
time (lightmeter)

. . - . .
Fig. 3. Comparison of the current densities measured at Lead B using various

temporal basis functions.
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the triangular basis function becomes unstable first, followed by

the basis function proposed in [6]. The cosine square function,

along with the proposed one in the present paper, continues to
yield stable results for the duration shown in Fig. 2.

A more complicated example is shown in Fig. 3, in which a
lead frame is excited by a current source at Lead A and the time-
domain response is measured at Lead B. Once again, early-time
results agree well among all different temporal basis functions.
Instability occurs first for the triangular function followed by the
cosine squared one. When replaced the temporal function by the
proposed function in (2), no late-time instability is observed. It
should be pointed out that the basis function in [6] requires a
matrix inversion and therefore is not employed in this compli-
cated example.

IV. CONCLUSION

We have constructed a temporal basis function through a non-
linear optimization scheme. This basis function has continuous
all-order derivative. It also has much less high-frequency con-
tent than the commonly used triangular temporal basis function.
It provides a superior stability for TDIE simulations as illus-
trated by the two examples given in the paper.
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